
#WASMIO23

WASMIO.TECH

Building Ephemeral Virtual Filesystems
For WebAssembly

Daniel Phillips
@d_philla

#WASMIO23

@d_philla

About me - Dan Phillips
- Engineer / Wasm Lead @ Loophole Labs
- WasmChicago Group - wasmchicago.org
- @d_philla

#WASMIO23

@d_philla

The Problem: What to do about Filesystems?
- Applications need them; Wasm alone doesnʼt have them
- Using FSs with Bare Metal -> VMs -> Containers… -> Wasm?
- “Why not”- driven development

#WASMIO23

@d_philla

POSIX, and current, non-Wasm state of affairs
- Defines the interface
- Libc + Syscalls
- Virtual Filesystems in linux

- an abstraction layer between userspace and the underlying file systems

- Underlying Filesystems, Networked, block devices, etc.

#WASMIO23

@d_philla
Source: Werner Fischer, Georg Schönberger - http://www.thomas-krenn.com/en/wiki/Linux_Storage_Stack_Diagram

#WASMIO23

@d_philla

Current Approaches
- WASI

- Provides scoped access to host filesystem resources
- Interface: wasi-libc

- Emscripten VFS
- Web-first, VFS on top of JS, can be backed by storage options like indexedDB or local

storage
- Interface: adapted musl libc

- wasi-vfs
- In-memory, Wasm-embedded, read-only VFS
- Interface: WASI, hooks WASI syscalls

 Why not go a step further?

#WASMIO23

@d_philla

Thinking about Abstractions
- User space vs Kernel space
- libcs, Syscalls, context switching, etc
- So, whatʼs possible? Letʼs question abstractions all the way down

#WASMIO23

@d_philla

Exploration Story: a Wasm libc + Wasm-first VFS
Why?

- Many, many, many programs rely on a libc interface for File i/o
- Freedom from underlying hosts

(non-rhetorically) Why not?

- Itʼs a lot to reinvent
- Constraints of the environment
- Alternatives already exist, specifically advances in WASI

#WASMIO23

@d_philla

🚨**DISCLAIMER** 🚨

I don’t really know anything about Filesystems 😅

#WASMIO23

@d_philla

A libc is needed - but which?
- Really just need to satisfy the libc interfaces, everything else is fair game
- i.e. why port abstractions from a system with different constraints?

- The abstractions imposed by Linux conventions may need not apply

- Keeping it simple, to start
- open, read, write, close

#WASMIO23

@d_philla

An FS – what could it look like?
- As plain as possible to start, as universal (as possible)

- Elements: implement basic fs syscalls, structure, RW, Permissions, etc.

- Another FUSE?
- Try not to borrow abstractions from previous constraints, e.g. Kernel vs Userland

- Virtual, only be virtue of being in a Wasm Environment
- Literally: syscalls on storage within limits of Wasm module, all under a libc
- The fewer abstractions that leak, the better

- Wasm 🤝 ʻServerlessʼ functions
- maybe a slim, “ephemeral,” Wasm-first FS could be a better fit in some situations?

#WASMIO23

@d_philla

FS operations:
Scale Function
 (scale.sh)

#WASMIO23

@d_philla

WIP: Persistence: A Snapshot model?
Possibility #1

- A Module loads state on instantiation from a centralized source of truth, even another VFS/FS on the host

Possibility #2

- A stateful VFS WASI module (component?), that exposes a resource handle to Wasm-only application
modules instances, signaling on application instance shutdown to update state on underlying platform

- like kernel-implemented VFSs? Standardize underlying storage operations

How “ephemeral” does a stateful component need to be?

- For example, a stateful layer could span several related or recurring application instances
- More exploration needed

#WASMIO23

@d_philla

The Future
So…
Why not?

- In-memory dbs already used: E.g. Redis as primary dbs, memcached, etc,
many more of these could be “Wasm-first” as components

- VFSs already help standardize storage interactions in kernel
implementations, why not in this paradigm?

- Linking to a persistent storage layer gets pushed to problem space of
distributed computing, if this path is pursued

#WASMIO23

@d_philla

More challenges
- There are several flavors of libc,

 which wrap even further varieties of syscalls,

 which interact with the vast types of “real”/virtual/non-Wasm Filesystems,

 on even more types of platforms 😱

 How could this be managed?

#WASMIO23

@d_philla

Unified Tooling
- strace-like tool for an arbitrary Wasm module, outside of scope of this talk,

but a WIP

- Generate bespoke and unique VFS + Libc-like implementations for novel,
arbitrary Wasm modules, regardless of platform they were generated on,
etc. – only implementing what is needed for a give module

- Allows for "Virtual Platform Layering" which, when contrasted with the
POSIX/Syscall kernel/user-space abstractions, can use only what is needed
for a specific instance of a module, and nothing more

#WASMIO23

@d_philla

Within the Component Model
- Virtualization Layers – (Luke Wagnerʼs recent Wasm Day talk)
- Resource / handle types could mean that the only glue code needed is a

libc interface, and
- resources are ʻdirectlyʼ usable, so minimal Syscall cost, perf
- Tooling for virtualization, supporting interface + Wasm-first Filesystem

generation for components could make for a very promising future
- WebAssembly as an implementation detail

#WASMIO23

@d_philla

- Thanks to the ByteCode Alliance, WebAssembly Community Group for
letting me be a fly on the wall in meetings

- Special thanks to Yuta Saito, Shivansh Vij for reviewing this talk
- Sergio for organizing

Thanks!

 daniel@loopholelabs.io - Loophole Labs

 Twitter - @d_philla

 WasmChicago Group - wasmchicago.org

mailto:daniel@loopholelabs.io

